

Sage 100 Customizer

Script Variables
Scripting-Plus

The following variables are available for use in scripts. These are passed into the script at run-time
eliminating the need to declare these variables prior to use. Any variable that begins with an ‘o’ is a handle
or reference to a Sage 100 object which gives the developer of the script access to a number of properties
and methods that can be used to implement unique business rules.

Besides this reference guide that discusses the passed in object variables, the Object Reference section of
the File Layouts help file is very useful for identifying object specific methods and properties including which
arguments (parameters) are needed, and how many arguments to pass.

oBusObj

Object handle to the currently running business object.

 If the script is tied to the SalepersonNo field in AR_Customer, oBusObj will be a handle to the
AR_Customer_bus object.

 If the script is tied to the QuantityShipped field in SO_SalesOrderDetail, oBusObj will be a handle to the
SO_SalesOrderDetail_bus object.

 If the script is tied to the PreWrite() event of the CI_Item table, oBusObj will be a handle to the
CI_Item_bus object

Useful Methods and Properties

retVal = oBusObj.GetValue(column$,
val)

Obtains the value from the business object for the column
requested (must be a column in the main table for the
current business object, append a $ to the column for a
string) and returns the value in val.

retVal = oBusObj.SetValue(column$,
val)

Sets a new value into the business object for the column
specified. retVal returns 1 if successful, -1 for a warning, or
0 for a failure. For 0 or -1 return values, you may check the
oBusObj.LastErrorMsg property to see why the SetValue()
call failed.

retVal = oBusObj.Write() Commits changes to disk. retVal returns 1 if successful, -1
for a warning or 0 for a failure. For 0 or -1 return values, you
may check the oBusObj.LastErrorMsg property to see why
the Write() call failed.

retVal = oBusObj.Clear() Takes a record out of edit state and discards any changes.
For some objects where Write() doesn’t release a locked
record, Clear() will release it.

Set oChild =
oBusObj.AsObject(oBusObj.GetChild
Handle (Data Source as String))

Returns a handle to a service object for the requested data
source. The data source is the name of the column
(without the $) from the main table of the business object
that is used to validate against another table.

Set oCust = oBusObj.AsObject(

oBusObj.GetChildHandle("CustomerNo")) will return the object

handle to the AR_Customer_svc object.

This is preferred over using the
oSession.AsObject(oSession.GetObject("AR_Customer_svc") as
the child handle object is already in memory. The
GetObject() method of the Session object will create a new
copy.

oBusObj.GetDataSources() as String Returns a list of columns that validate against a service
object. This is the same list you see under the Data Source
dropdown in User Defined Field and Table Maintenance
when creating a business object UDF. The columns are
separated using the CHR(138) character (Hex 8A).

sDataSourceList = oBusObj.GetDataSources()

oBusObj.ReadAdditional() Reads all child data sources for current record

oBusObj.ReadAdditional(Data Source
as String)

Reads a specified data source

oBusObj.EditState EditState property values (0=no record in memory;
1=Existing record; 2=New record). Useful if you only want
to run logic for a new record. Read Only cannot be set.
(NOTE: This is also the return value of the SetKey()
method.)

oBusObj.RecordChanged Use this property to identify if the current record has
changed (1) or is unchanged (0).

oBusObj.LastErrorMsg This property will contain the reason for the last error that
occurred. This property should be checked if any
SetValue(), Write() or Delete() method calls return 0 to
determine why those operations failed

oBusObj.Delete() Use this to delete the current record from the business
object.

NOTE: As with the Write() method, this should not be called
for the oBusObj handle, as the Delete() and Write()
methods will be called during normal processing. If these
methods were called from script, then the record would no
longer be in an edit state and unexpected results would
occur to the user. This is merely being documented to
show how it can be used to update and delete rows from
other business objects obtained with the GetObject()
method of the oSession object.

retVal = oBusObj.GetValues(columns,
data)

New since v2013

Get multiple values from an object
columns - A comma separated list of column names
data - A Chr(138) separated list of data.

retVal =
oBusObj.GetValues(“ItemCode,QuantityOrdered,ItemCodeDesc”,
data)

retVal = oBusObj.SetValues(columns,
data)

New since v2013

Set multiple values into object
columns - A comma separated list of column names
data - A Chr(138) separated list of data.

Ex:
data="8953" & Chr(138) & "5" & Chr(138) & "Multi-Widget" &
Chr(138)

retVal =
oBusObj.SetValues("ItemCode,QuantityOrdered,ItemCodeDesc",
data)

Note: If the result of any of the values is a failure then
retVal will be returned as a zero and a separated list of
errors will be returned in oBusObj.LastErrorMsg

Useful Methods for Line Entry Detail Business Objects

retVal = oBusObj.AddLine() Initialize a new line in the line entry object complete
with any default values. Must be called before doing
SetValue() calls to set other columns for the newly
added line.

retVal =
oBusObj.InsertLine(LineSeqNo)

To positionally insert a line (just like clicking the
Insert Lines button on the Lines tab). Prior to this, do
a GetValue() on the LineSeqNo column.

Ex:

sLineSeqNo = ""
retVal = oLines.GetValue("LineSeqNo$", sLineSeqNo)
retVal = oLines.InsertLine(sLineSeqNo)

retVal = oLines.Delete() To delete a line or a header. Be careful with this
one. If deleting a line, use oLines.Delete() if the
starting point is the header object and use
oBusObj.Delete() if the starting point is the lines
object.

sEditKey =
oLines.GetEditKey(LineKey)

Use this to get the EditKey value for the EditLine()
method. Prior to this do a GetValue() on the LineKey
column. Ex:

sLineKey = ""
retVal = oLines.GetValue("LineKey$", sLineKey)
sEditKey = oLines.GetEditKey(sLineKey)

retVal =
oLines.EditLine(sEditKey)

Use this to edit an existing line. Ex:
retVal = oLines.EditLine(sEditKey)

Now do a SetValue() on the columns that need
changing the follow it up with a Write()

oSession

Object handle to the currently running session object.

Useful Methods and Properties

oSession.CompanyCode Current company code

oSession.CompanyKey Current company key from Sy_Company.
Useful when using report object requiring key

oSession.CompanyName Current company name

oSession.UserCode Current user

oSession.AsObject(oSession.Security)
.IsMember(“rolename”)

Will return 1 if user belongs to specified
security role or 0 if not a member. Useful for
scripting based on security roles. (NOTE:

IsMember is actually a method of the Security
object which is a property of the Session
object.)

SET oMyObj = oSession.AsObject
(oSession.GetObject(objectName
[,UDTableName]))

Returns a handle to the requested object into
oMyObj using the security rights for the current
user. UDTableName is only required if
obtaining a business or service object for a
User Defined Table. The AsObject method
indicates that the return value is an object
handle. (NOTE: If a user does not have
sufficient security access for the requested
object, then oMyObj will return as zero causing
the SET to fail and crash the script. If it is
possible the user does not have rights, the
preferred technique is the following:

oMyObj = oSession.GetObject(objectName
[,UDTTableName])

if oMyObj <> 0 then
 Set oMyObj = oSession.AsObject(oMyObj)
end if

oSession.DropObject(obj handle) If in a line detail bus obj lot of re-use so may be
better to not drop. Clean-up will occur anyway.
DropObject() only runs in a button script or
from external BOI.

oSession.Updating Are we in the middle of an update?
Value returned as numeric
1 = Yes 0 = No

Ex: A Post-Delete script runs in P/O ROG
Entry. However this script should be excluded
from P/O Daily Receipt Register Update.

If oSession.Updating = 0 Then
 ‘ Run script code
End If

oSession.ModuleDate Current module date (YYYYMMDD)

oSession.SystemDate Current system date (YYYYMMDD)

oSession.PathRoot Gives location of current installation Sage 100
directory. It is useful for relative path names to
external files such as PDF documents.

retVal = oSession.FormatDate() and
retVal = oSession.GetFormattedDate()

Needed to do date calculations on Sage 100
dates, using the VB Script DateAdd() function
for example.

oSession.GetParameter(module,
option_column, val)

Gets value from options table. Ex:

oSession.GetParameter(“A/R”, “Divisions$”,
val)

returns “Y” if current company is set to use
divisions.

Other Session Object Properties

oSession.UserName User Logon field from User Maintenance
oSesson.UserCode is the 3-digit User ID

oSession.CS (num) 1 = Adv / Premium 0 = Std

oSession.ModuleCode Module code (e.g. A/P). For Library Master it is SYS

oSession.ModuleName Module name (e.g. Accounts Payable)

oSession.CurrentPID Server PID of current Sage 100 task (numeric)

oSession.CSHostIP Sage 100 Adv/Prem App Server Port (string)

oSession.CSHostName Sage 100 Adv/Prem Server name (string)

oSession.WorkstationName Workstation Computer Name (string). If running from Terminal
Server / Citrix the Computer Name of remote PC is returned

oSession.StartProgram Returns start program name the session belongs to (string)
Used to condition scripts
Ex: When a Post-Write script runs in S/O Entry it performs certain
tasks that should not be performed where orders are auto-created
such as RMA Generation, Auto Generate Sales Order, EDI imports,
structured web imports (e.g. In-Synch, Website Pipeline), or VI
imports.

Note: StartProgram should not be used to control whether it is safe
to perform UI logic such as disable/hide controls, message dialogs,
Etc. because in most BOI type applications, the StartProgram is set
to the same value as when running from the Sage 100 ERP
desktop. See the section under oUIObj for the recommended
method for UI detection.

If oSession.StartProgram = "SO_SALESORDER_UI" Then
 ‘ Run script code
End If

oScript

Object handle to the script helper object.

There is a separate script object for each business object for which scripts have been tied to events using
User Defined Scripts. For example, SO_InvoiceDetail_bus has a script object associated with it, and
SO_Invoice_bus (header object) has its own script object. Also, scripts run from the User Interface using a
Customizer BT_Link script button have a separate script object.

Useful Methods

retVal = oScript.SetStorageVar
(id_desc as String, val)

Use this method to store any number of values that need to
be accessible across function calls. Meaning they can be set
in one procedure and obtained in another procedure for
processing. Very useful for performance purposes when
setting default values programmatically. (NOTE: object
handles cannot be stored as objects, only numerics)

retVal =
oSession.SetStorageVar
(id_desc as String, val)

Use this variation when you have “layers”. For example if
you have a line event script running but a Lot/Serial
Distribution window appears or a developer window

appears, use the oSession version of SetStorageVar.

retVal =
oScript.GetStorageVar
(id_desc as String, val)

Complement to SetStorageVar, used to get a previously
stored value.

retVal =
oSession.GetStorageVar
(id_desc as String, val)

Use this variation when you have “layers”. For example if
you have a line event script running but a Lot/Serial
Distribution window appears or a developer window
appears, use the oSession version of GetStorageVar.

retVal =
oScript.SetError(errstring as
String)

Used to fail any of the “Pre” procedures – Pre-Validation,
Pre-Write, and Pre-Delete. Set the reason you are failing the
procedure into the errString argument.

Note: After setting the error, you should use an Exit Sub to
halt any further processing of the script. The business
framework base classes will then evaluate this error
message and display the appropriate error message to the
user or, in the case of VI, will write to the error log the
reason for the failure.

retVal = oScript.SetWarning
(warnstring as String)

Same as SetError only the method will not fail and
processing will continue. The warning message box will still
be displayed to the user. (NOTE: because further
processing will occur, it is possible that the warning
message will be overridden by standard Sage 100 logic.)

retVal =
oScript.ActivateProcedure
(proc_name as String)

and

retVal =
oScript.DeactivateProcedure
(proc_name as String)

These are used to give the script author the ability to avoid
recursive calls. For example, if the
PostValidateQuantityShipped(col, val) procedure script was
to invoke the oBusObj.SetValue(“QuantityShipped”, val), this would
in turn cause the PostValidateQuantityShipped(col, val)

procedure to be called again. To avoid this, call retVal =
oScript.DeactivateProcedure(“PostValidateQuantityShipped”)

prior to the SetValue() call, then use the
retVal=oScript.ActivateProcedure(“PostValidateQuantityShipped”)

to reactivate this procedure.

Note: Use retVal = oScript.DeactivateProcedure(“*ALL*”) to
deactivate/activate all procedures for the current business
object.

Note: Use retVal = oScript.Deactivate(“*”) to
deactivate/activate the current procedure.

retVal = oScript.InvokeButton
(btn_name as String)

Used to invoke a button. From a business object script this
will only fire after the script is complete AND if there is a UI
object present. This is to prevent any UI during a VI job or
external use of the business object. The button name to be
invoked can be determined by looking at the control names
when editing a form in Customizer Selection.

Tab folders are also considered buttons and can be invoked
as well. The name of the folder button is preceded by
fldr.<panel_name>

retVal = oScript.InvokeButton(“fldr.pMain”) will simulate the
user clicking on the Main tab folder.

From a UI script (i.e. BT_Link), buttons can be fired
immediately by using the retVal = oUIObj.HandleScriptUI()
immediately after calling the retVal =

oScript.InvokeButton(“BT_Accept”) method.

oScript.LinesAdded Use this property to set the number of lines added using
your script. Make sure you are checking the return value on
the Write() method of the lines business object to ensure the
line was actually added when setting this property.

retVal = oScript.LoadGrid
(grid_control as String)

This is only required if the grid you are attempting to load is
not “GD_Lines” (which is the default grid in all Sage 100
data entry screens). The UI object will automatically attempt
to load GD_Lines if the oScript.LinesAdded property is not
zero upon exiting the script.

retVal = oScript.SetUIControl
(control as String, action as
String)

Used to perform a specific action on a given control. Control
is name of control - for example, “BT_Link_1” - and action
can be one of the following:

 ENABLE: Enable control

 DISABLE: Disable control

 SHOW: Show control

 HIDE: Hide control

At run-time the system detects whether or not a Sage 100
screen is in use. If not (such as when using VI to import
customers), then these calls are ignored.

Since the scripter may not know if the user if on the specific
tab folder for which the control is being hidden or shown, a
list of controls is maintained so that if the user switches to a
tab that has a control that should be hidden it will be hidden.

Caveat: In some cases there may be subsequent logic
either from standard Sage 100 code or from Master
Developer logic that will run after the script has run, causing
a field to be re-shown after the script was run to hide it. This
can happen on standard Sage 100 fields. In these cases
the recommended work-around is to hide the fields in
Customizer and place them on a new Link dialog. Then the
script can hide and show the BT_Link_1 button.

Note: Only works on controls, will NOT work for grid cells.

retVal =
oScript.DebugPrint(text)

Method to output variables and text to aid in debugging
scripts. This requires use of the Providex trace window.
This trace window can be enabled by adding ‘Debug=1’ in
the SOTA.ini file in the Launcher directory under the [config]
section. Once enabled right click on the Sage 100 title bar
of the current task (e.g. AR Customer Maintenance) and
select Debugging Environment..Program..Trace Window. In
the trace window choose Options..Suppress Program trace.
When the scripts are running, any text from a DebugPrint()
call will be displayed in the trace window.

currentProc =
oScript.GetCurrentProcedure()

New in v2015

Returns the current procedure that the script is running for.
Useful when pinning the same script to multiple events.

oHeaderObj

Object handle to the header object for the current detail object.

Only available on detail business objects, for example, SO_SalesOrderDetail_bus scripts have oHeaderObj
as a handle to SO_SalesOrder_bus. This can be useful in setting default values on lines columns based on
a header value. Also useful for setting a header column based on some script in a detail line, for example,
to set UDF_DropShipNeeded$ on the header in the PostValidateDropShip procedure of the detail line.

column, value

These two variables are passed in for the two column-level Pre-Validate and Post-Validate procedures.
column contains the name of the column for which this procedure was called. It is stripped of the dollar-
sign if it is a string (e.g. SalesPersonNo). This can then be used to get a child handle for any column that
validates against another Sage 100 table or UDT. value contains the value that was set into the business
object.

oUIObj

Object handle to the currently running UI object.

By default this is only available in the context of UI scripts and button scripts. However it may be available in
the context of table event scripts IF the business object is being run from the Sage 100 Erp UI task. It is the
responsibility of the script programmer to implement proper checking to ensure accurate detection of when
the UI object is available.

The following debug script, used for QA purposes, illustrates the recommended method for UI detection:

' Recommended UI detection - if no UI then do not use any type of MsgBox or other UI.
' This is important because if your script pops a MsgBox during an automated process
' such as an import, or webservices running as a background process, the service will hang.

If (IsObject(oUIObj)) Then
 ' This is either a UI Event Script or a Button link script
 ' – because oUIObj is directly available.
 MASUI = True
 screenName = oUIObj.GetScreenName()
 panelName = oUIObj.GetPanelName()
 folderName = oUIObj.GetFolderName()
Else
 ' This is a Business Event script. Must test if UI is present/available
 MASUI = CBool(oScript.UIObj)
 If (MASUI) Then
 ' Need to get my own handle to access oUIObj functionality such as InvokeChange(), InvokeLookup(), Etc.
 Set myUIObj = oSession.AsObject(oScript.UIObj)
 screenName = myUIObj.GetScreenName()
 panelName = myUIObj.GetPanelName()
 folderName = myUIObj.GetFolderName()
 Set myUIObj = Nothing
 End If
End If

currentProc = oScript.GetCurrentProcedure() ' Available in both UI and Business Events - no need to check for UI.

If MASUI Then
 ' Ok to Message box
 uiContext = "Current Proc: " & currentProc & vbCRLF & "Screen Name: " & screenName & vbCRLF & \

 "Panel Name: " & panelName & vbCRLF & "Folder Name: " & folderName
 ' Always use Sage 100 MessageBox instead of VbScript MsgBox() to avoid msg appearing on

' the server where no one can click on it
 oSession.AsObject(oSession.UI).MessageBox "", uiContext
Else
 ' Not Ok to Message box
 tableName = oBusObj.GetTable("main")
 busContext = "Current Proc: " & currentProc & " - Table Name: " & tableName
 ' But Ok to print to Trace Window.
 oScript.DebugPrint busContext

 ' And A-Ok to write to the activity log.
 oSession.WriteLog "A", "Yay! Scripting can write to the activity log! " & busContext
End If

Note: oBusObj, oSession, oScript, oLines object handles are also available to button scripts as long as the
script is set to Execute Script on the Server.

Useful UI Methods

retVal = oUIObj.HandleScriptUI() Use this
to immediately fire off any UI. Always use
after InvokeButton()

Related events that were requested using the oScript
objects, for example, InvokeButton(), SetUIControl(), or
LoadGrid().

retVal = oUIObj.GetValue(ctlName , val) Used to obtain the value of a control on the screen (the
control ID). You can see the names of the controls that
are available from within Customizer Selection when
editing a panel.

retVal = oUIObj.GetValue("ML_SourceJournal$", val)

retVal = oUIObj.InvokeChange(ctlName,
val [,gridName])

New since version 4.50

Used to change the value of a control on the screen or a
column in a grid. This method may be useful for certain
situations where there is unique logic associated with
changing the value of a control on the screen or in a grid,
which is not invoked via oBusObj.SetValue(). E.g.
Changing the QuantityOrdered in a sales order line does
not update the “Total Amount” displayed on the lower-right
corner of the Lines tab.

Arguments:

ctlName: Required, String, the name of the multiline or
grid column being changed, (no “$”).

val: Required, String or Numeric: The new value to change
the control to.

gridName: Required when changing grid columns only.
Example “GD_Lines”.

Example: Changing the quantity ordered on a line.

retVal = oUIObj.InvokeChange("QuantityOrdered", numVal,
"GD_Lines")

Example: Changing the customer number on a sales order
header:
retVal = oUIObj.InvokeChange("ML_Customer", strVal)

retVal = oUIObj.SetFolderState(tab folder,
action)

New since v2013

Allows you to disable or enable tab folders.

retVal = oUIObj.SetFolderState("pAddress,pLines,pTotals",
"ENABLE")

retVal =
oUIObj.InvokeLookup(lookupCode, value,
[startValue])

New since v2013

Invoke a Sage 100 lookup from a button script

lookupCode = A valid Sage 100 lookup code
value = the value selected by user from the lookup
startValue = Use if a lookup requires a starting key value.
Note: if dealing with a multi-part key, general rule is to null
pad all the key segments except the last.

retVal = oUIObj.InvokeLookup("CI_ItemAll", item)

Note: Only available for custom button scripts. If no value
was selected or an invalid lookup code, then the return
value will equal zero.

returnValue = oUI.ProgressBar(option as
string, title as string, msg as string, pct
as number, extra options as string)

Option has 3 choices:
init - sets up the dialogue to display progress
update - increments the progress bar
close - terminates the progress bar

Allows you to show you a progress meter. Useful if you
have a long running script. Note in a button script usually
you have to set the UI object handle separately:

If oSession.UI<>0 Then
 Set oUI = oSession.AsObject(oSession.UI)
End If

returnValue = oUI.ProgressBar("init", "Updating AR Invc
Hist Hdr...", "Update SP Comm ...", 0,"")
' Follow it up with update and close statements

oUIObj.GetControlProperty(ctlName,
propertyName, value)

New in v2015

Retrieve the value of a NOMADs control property.
Available properties (depends on the control type) include:
BackColour, Enabled, TextColour, Value, Visible.

Example: Get number of rows in a grid
rows = ""
oUIObj.GetControlProperty("GD_LINES", "RowsHigh", rows)

oUIObj.SetControlProperty(ctlName,
propertyName, value)

New in v2015

Sets a property value to a NOMADs control property.
Available properties and valid values depend on the
control type.

Example: Set the background color of the 2nd row in the
grid.

oUIObj.SetControlProperty("GD_LINES","Row","2")
oUIObj.SetControlProperty("GD_LINES","Column", "0")
oUIObj.SetControlProperty("GD_LINES","Backcolor","RED")

oUIObj.GetScreenName()

oUIObj.GetPanelName()

oUIObj.GetFolderName()

New in v2015

Returns the current screen (Library) name, the current
panel or dialog name, and the current folder tab.

screenName = oUIObj.GetScreenName()

panelName = oUIObj.GetPanelName()

folderName = oUIObj.GetFolderName()

oUIObj.DropBoxLoad(dropBoxName,
value, delimiter)

New in v2015

Load or reload a drop box with a delimited list of values.
This can be used with both factory and UDF drop boxes.

Arguments:
dropBoxName: Required, string. Name of the drop box
being loaded.
value: Required, string. Delimited list of values.
delimiter: Optional, string. Delimiter used in the list of
values

Example: Load a drop box UDF named DROPBOX with
the values One, Two, and Three.
oUIObj.DropBoxLoad "UDF_DROPBOX", "One/Two/Three/"

Note: Trailing delimiter required.

Setting %NOMAD_Suppress_ListErr$ (required for UDF drop
boxes) Because UDF drop boxes are validated against the
list of values (or no value) entered when creating the UDF,
so it is necessary to suppress the error generated when
dynamically loading a different set of values. This only

needs to be done once per session, typically in the
PostLoadDMain() event. This is an example of setting this
value for a UDF list box named LISTBOX and a drop box
named DROPBOX2:

oUIObj.SetVar "%NOMAD_Suppress_ListErr$",
"/UDF_LISTBOX/UDF_DROPBOX2/"

oUIObj.ListBoxLoad(listBoxName, value,
delimiter)

New in v2015

Load or reload a list box with a delimited list of values.

Arguments:
listBoxName: Required, string. Name of the list box being
loaded.
value: Required, string. Delimited list of values.
delimiter: Optional, string. Delimiter used in the list of
values

Example: Load a list box UDF named LISTBOX with the
values One, Two, and Three.
oUIObj.ListBoxLoad "UDF_LISTBOX", "One/Two/Three/"

Note: Trailing delimiter required.

Setting %NOMAD_Suppress_ListErr$ (required for UDF list
boxes) Because UDF list boxes are validated against the
list of values (or no value) entered when creating the UDF,
so it is necessary to suppress the error generated when
dynamically loading a different set of values. This only
needs to be done once per session, typically in the
PostLoadDMain() event. This is an example of setting this
value for a UDF list box named LISTBOX and a drop box
named DROPBOX2:

oUIObj.SetVar "%NOMAD_Suppress_ListErr$",
"/UDF_LISTBOX/UDF_DROPBOX2/"

Some Common Methods (any business object)

.IsMember(“rolename”)

Ex: Check if current user is member of SalesMgr role (as defined in Role
Maint)
sRoleName = "SalesMgr"
If oSession.AsObject(oSession.Security).IsMember(sURL) > 0 Then
 ‘ …. Run script code
End If

.SetToReadOnly(text) Will produce an “Unable to Edit” message followed by any user text
and prevents any access to that bus obj.

.MessageBox(btn as string,
msg as string)

Produces message box. Must use this variation for Adv/Prem and
recommended for Std version too:
sMsg = "This is the MessageBox method instead of MsgBox VB fcn"
retMsg = oSession.AsObject(oSession.UI).MessageBox("", sMsg)

.MoveFirst() Move to the first record in the bus object

.MoveLast() Move to the last record in the bus object

.MovePrevious() Move to the previous record in the bus object

.MoveNext() Move to the next record in the bus object

.SetBrowseFilter(filter) Pre-filters the next MoveNext() or MovePrevious()

e.g. In SO_SalesHistory you have the 1st two keys but only a partial

value of the 3rd key but doing MoveFirst() then MoveNext() is time
consuming.

retVal= oSalesHistory.SetBrowseFilter(sDiv & sCust & "NGK")

Now when doing oSalesHistory.MoveNext() or oSalesHistory.MoveNext() it will
not go to next sequential record but filtered based on the division in
sDiv, customer number in sCust, & item code starting with “NGK”.

.SetBrowseIndex(
NewBrowseIndex,
BrowseIndex)

Allows you to assign a new index for the MoveNext() or
MovePrevious()

.Find(key)

Allows you to do a keyed lookup to find a value. SetKey() also does
but use that when you need edit the record or access the lines
portion of header / detail object. If you just need to grab a header
value and not change it, use Find.

e.g. retVal = oGLAccount.Find(tmpAcctKey)

This finds the primary key in GL_Account.m4t that matches
tmpAcctKey.

Note: If the key contains multiple key segments there are 2 ways to
deal with this:

1) Concatenate the key segment values but general rule is all but
the last key segment needs to be null padded. Ex:
PaddedKey = sItemCode & String(30-Len(sItemCode),Chr(0)) & sWhse
retFind = oItemWhse.Find(PaddedKey)

2) Use the _bus object, then SetKeyValue() on each key segment,

then instead of SetKey() to put the record in an edit state (which
is okay if you want to edit the record or create a new one), use
Find() without an argument.

.SetKeyValue(key column as
string, key value as string)

Primarily used prior to the SetKey() command with no arguments
passed in. Use this to set each key segment when you have multi-
part keys.

Ex 1 : Assume a script runs in A/R Customer Contact Maintenance

retVal = oBusObj.SetKeyValue("ARDivisionNo$", sDiv)
retVal = oBusObj.SetKeyValue("CustomerNo$", sCust)
retVal = oBusObj.SetKeyValue("ContactCode$", sContactCode)
‘Now the do the SetKey() with no arguments:
retVal = oBusObj.SetKey() ‘Now the row has been put into an Edit
State

Use SetKeyValue() also on a business object when you need to do a
Find()with multi-part keys:

Ex 2: Assume you need to Find() an item code and warehouse code
and have done a GetObject() to create an object handle to I/M Item
Warehouse Code as oItemWarehouse:

sItemCode = "6655" : sWhse = "000" : QOH = 0
retVal = oItemWarehouse.SetKeyValue("ItemCode$", sItemCode)
retVal = oItemWarehouse.SetKeyValue("WarehouseCode$", sWhse)
retVal = oItemWarehouse.Find()
retVal = oItemWarehouse.GetValue("QuantityOnHand", QOH)

.SetKey(key value as string) or

.SetKey() with no arguments
Use this to put the record into an Edit State:
2 = New record
1 = Existing record
0 = No record in memory

Ex 1:
sItemCode = "6655"
retVal = oBusObj.SetKey(sItemCode)
Select Case retVal
Case 2
 ‘Allows you to creates a new item
Case 1
 ‘Update a field on existing item via SetValue() and Write()
End Select

Ex 2: For multi-part keys use SetKeyValue() from above

.GetKeyColumns() as String Allows you to find the key columns on a table. You can also look at
File Resources for this purpose:

sKeyCols = oBusObj.GetKeyColumns()
retMsg = oSession.AsObject(oSession.UI).MessageBox("", sKeyCols)

.GetColumns(Data Source) as
String

Returns a CHR(138) separated list of all columns from the main data
source or an alternate data source for an object

sCols = oBusObj.GetColumns("MAIN")
retMsg = oSession.AsObject(oSession.UI).MessageBox("", sCols)

If needed, use the VB Replace functions to substitute the CHR(138) characters (Hex
8A) with something more exportable such as commas:

sCols2 = Replace(sCols, CHR(138), ",")
retMsg = oSession.AsObject(oSession.UI).MessageBox("", sCol2)

.GetRecord(<record data as
String>, pvx IOList>)

This is not useful in scripting. Use GetColumns() and/or GetValues()
instead

.BOF and .EOF properties Indicates whether or not the record pointer is at the begging or end of
the file, respectively. Very commonly used in looping structures.

Ex: When looping through a Lines grid typical code is:
Set oLines = oSession.AsObject(oBusObj.Lines)
retVal = oLines.MoveFirst()
Do Until cBool(oLines.EOF) ‘Keep looping until record pointer is on
last line
..
..
 retVal = oLines.MoveNext()
Loop

ScriptTimeout property The default ScriptTimeout value is 10 seconds. It indicates how long
to wait before sending timeout signal to the Windows Scripting Host.
Use this to extend processing for scripts that may take longer to
execute. Note this is a global setting for all users. To make this
change edit the ..\mas90\Launcher\Sota.ini file on the server and add
an entry to the [Config] section:

[Config]
Serial=…
Users=…
…
…
ScriptTimeout = 30000 ‘In milliseconds - changes timeout to 30 seconds

.SetIndex(Index Name as
string)

If you know the primary key or an alternate key, this is much faster
search than MoveNext() which is a sequential positioning on the next
record (unless a browse filter was previously set through
SetBrowseFilter).

Ex: Since GL_Account table has multiple keys/indexes, you can take
advantage of using a different search index for speed.

If you want to search by fully formatted account (FFA) instead of the
primary key AccountKey:
retVal = oGLAccount.SetIndex("KACCOUNT")
retval = oGLAccount.Find(tmpAcctNo)

For a list of indexes for a table use either DFDM or File Layouts.

IsObject(VB object variable)

Set (VB variable as an object
variable)

IsObject() is VB command to check if variable is also an object
handle
Returns True or False (implicitly or explicitly)

Ex 1: Check if we have an object handle PO_PurchaseOrder_bus
already. If not then get an instance of the object:
If Not(IsObject(oPO)) Then
 Set oPO
=oSession.AsObject(oSession.GetObject("PO_PurchaseOrder_bus"))
End If

Ex 1a - Alternate:
If IsObject(oPO) = False Then
 Set oPO
=oSession.AsObject(oSession.GetObject("PO_PurchaseOrder_bus"))
End If

If the Sage 100 session stays open (user does not close down
screen) in most cases you can re-use existing object.

To get a new copy of an object use the GetObject() command but
first check to see if a data source exists (same Data Source you see
in UDF Maintenance in Custom Office). If it does use that
GetChildHandle() command instead because you are taking
advantage of the same object currently in memory that is pre-linked
to another table.

.SetCopyKeyValue(<keyColumn
As String>, <keyValue As
String>)

Set the individual key segment to prepare for the CopyFrom()
Ex:
retVal = oBusObj.SetCopyKeyValue("ARDivisionNo$", sDiv)
retVal = oBusObj.SetCopyKeyValue("CustomerNo$", sCust)
retVal = oBusObj.SetCopyKeyValue("ContactCode$", sContactCode)

.CopyFrom(key) or .CopyFrom() Copies all the non-key fields into an object. If SetCopyKeyValue()
was used to set the individual key segments then no argument is
needed

Example continued from SetCopyKeyValue() above:
retVal = oBusObj.CopyFrom()

